Scattering of water waves by rectangular thick barriers in presence of surface tension

Authors

Gour Das
Department of Mathematics, Jadavpur University, Kolkata-700032, India.
Rumpa Chakraborty
Department of Mathematics, Diamond Harbour Women’s University, South 24 Parganas-743368, India

Abstract

The influence of surface tension over an oblique incident waves in presence of thick rectangular barriers present in water of uniform finite depth is discussed here. Three different structures of a bottom-standing submerged barrier, submerged rectangular block not extending down to the bottom and fully submerged block extending down to the bottom with a finite gap are considered. An appropriate multi-term Galekin approximation technique involving ultraspherical Gegenbauer polynomial is employed for solving the integral equations arising in the mathematical analysis. The reflection and transmission coefficients of the progressive waves for two-dimensional time har- monic motion are evaluated by utilizing linearized potential theory. The theoretical result is validated numerically and explained graphically in a number of figures. The present result will almost match analytically and graphically with those results already available in the literature without considering the effect of surface tension. From the graphical representation, it is clearly visible that the amplitude of reflection coefficient decreases with increasing values of surface tension. It is also seen that the presence of surface tension, the change of width, and the height of the thick barriers affect the nature of the reflection coefficients significantly